
1

Introduction

This manual provides a single reference guide to all of the functionality provided by the AIOW DM driver

package. This driver supports several families APIs for using PCI-based plug and play devices, including

direct register access, watchdog timer control, and change-of-state IRQ handling.

This document describes the API’s functions in sections to better distinguish which ones apply to YOUR

device.

All PCI-compatible devices, other than serial boards, use this AIOW DM driver. This includes PCI, PCI

Express, PCI-104, PC/104+, and many others.

USB devices, including PICO, USBP, USB/104, etc., use the AIOUSB driver and documentation, located

in the “USB Software Reference.pdf” manual.

ISA devices, including PC/104, use a variety of drivers and utilities as documented in the “non PnP

Software Reference”.

The top of each section will include a header, like the following.

General Information
Change-of-

State IRQs

Generic IRQ Any Register

Access

Watchdog

Boards

Board Discovery

Please check the header to make sure you need to bother reading any given section, based on which card

you’re working with. Black, bold text means “the following section is applicable to these categories of

boards or functionality.” This driver has many functions, and it might seem a little overwhelming. Make

sure you don’t get bogged down trying to learn entire families of functions that have nothing to do with

your product!

General Information
Change-of-

State IRQs

Generic IRQ Any Register

Access

Watchdog

Boards

Board Discovery

Useful to All PCI Related Tasks

General Information
All functions are exported in three forms: underscored with the cdecl calling convention (the easiest for

C++), undecorated with the stdcall calling convention (easiest for Visual BASIC), and undecorated with the

cdecl calling convention (easiest for most other languages). Import declarations are given for Object

Pascal / Delphi, Visual C++, and Visual BASIC. Visual BASIC doesn't have true pointers, and thus

pointer-using functions are declared in Visual BASIC to always have a non-null pointer.

For function signatures or prototypes in any specific language, please refer to the language-specific

source files (AIOW DM.h, AIOW DM.cs, AIOW DM.vb, etc.).

W e also provide a managed code wrapper DLL for easy use of the driver in .NET languages. Consult the

.NET section of this manual for more information.

There are two ways to use the functions in this driver: A simple way, and a flexible way. If you know at

design time that you will never have more than one PCI or PCI-Express based card (any card that uses

2

AIOW DM as its driver) in your system, use the simple way. If you will ever need to support more than a

single AIOW DM-using card in the system simultaneously, you need to implement the more flexible

interface.

The difference lies in how you acquire the parameter “CardNum”. CardNum is a handle into the list of

AIOW DM-using cards detected in the system.

In a simple setup with only one AIOW DM-using card, CardNum will always be Zero, being the first and

only card in the system.

If you have two or more AIOW DM-using cards you will need to determine which card is installed at which

CardNum index, using the API’s flexible GetNumCards() and QueryCardInfo() functions. Please see the

“Flexible Access” section of the manual for detailed information on using multiple cards in a system.

Once you have your CardNum squared away, whether it be simply Zero (0) or the specific CardNums

determined via QueryCardInfo(), the way you use the rest of the AIOW DM functions is the same.

Register Level Access
Change-of-

State IRQs

Generic IRQ Any Register

Access

Watchdog

Boards

Board Discovery

Virtually every program will use one or more of these functions

RelInPortB

RelInPort

RelInPortL

RelOutPortB

RelOutPort

RelOutPortL

All of these functions take a CardNum as the first parameter, and a register offset as the second

parameter.

The “In” family reads from the specified device’s specified register and returns the value (a Byte, a W ord,

or a 32-bit Unsigned value) requested. These functions perform an operation equivalent to the “IN AX,

DX” assembler instruction, or the READ_PORT_UCHAR W indows’ kernel macro.

The “Out” family takes a third parameter (a Byte, a W ord, or a 32-bit Unsigned value) and writes it to the

specified device’s specified register. These functions perform an operation equivalent to the “OUT DX,

AX” assembler instruction, or the W RITE_PORT_UCHAR W indow’s kernel macro.

So, to read a W ord from the first card’s register at offset 2:
value = RelInPort(0, 2);

To read a Byte from the second card’s register at offset 12:
value = RelInPortB(1, 12);

To write a 32-bit value to the first card’s register at offset zero:
RelOutPortL(0, 0, value);

Example Function Prototype:

UInt16 RelInPortB(Uint32 CardNum, UInt32 Register);

3

A note about error handling:

All of these functions can return an error value of “0xAA55", which means the underlying driver

(AIOW DM.SYS) is not installed correctly. Because 0xAA55 is a valid return value from the W ord and 32-

bit functions, it is useful to issue a single Byte sized read from an innocuous address at the init-time of

your program to check for this error: no byte read function can return a 16-bit value unless it is this error,

and if any function returns this error, all functions will, every time, until the driver is installed correctly. This

also means, if you perform this byte-read init-time error check, no further error handling is needed in your

program for these functions.

Migration from older versions / operating systems
Change-of-

State IRQs

Generic IRQ Any Register

Access

Watchdog

Boards

Board Discovery

notes about moving from Windows XP to Windows 7 or from old code to new

Operating system migration: Moving legacy applications to Windows 7

The following register access functions are deprecated:

InPortB()

InPort()

InPortL()

OutPortB()

OutPort()

OutPortL()

These functions do not use CardNum as the first parameter, nor the register offset as the second.

Instead, they are NON PLUG AND PLAY, and use an absolute address into the I/O memory space as

their first parameter (which then eliminates the second).

For example, instead of
value = RelInPortL(CardNum, RegisterOffset);

these functions would use
value = InPortL(CardBaseAddress + RegisterOffset);

Because of this “CardBaseAddress” business, if the card’s plug-and-play assigned base address

changes, your code needs to know how to handle this.

To support this we implemented QueryCardInfo() in a way that allows your program to acquire the actual

absolute address of the card, which older code used to do every time your program ran.

Before even the QueryCardInfo technique customers were using the non-plug-and-play ACCES32 driver

which doesn’t support QueryCardInfo() at all. In order to get the absolute base address of a card in

programs written that Int32 ago the software would query a set of W indows Registry keys containing an

array of structures called “PCI_COMMON_CONFIG” which then had to be parsed to find the base

address. Additionally, this registry information was only updated by running a utility called PCIFind and its

underlying kernel driver NTioPCI.SYS, none of which works in modern operating systems!

In summary, AIOW DM eliminates the need to know the address of your card. It eliminates the

NTioPCI.SYS driver running at every start-up of your system. It eliminates the PCIFind.exe utility copying

the information from NTioPCI.SYS into the software-readable W indows registry locations every time the

computer boots. It eliminates the need for applications to query this array of structures from the registry

and wade through the data to determine a base address of the card.

4

For systems using only a single PCI card through AIOW DM, all of this simplification is achieved just by

changing from “address+offset” to “0, offset” in calls to the API.

If you have a single card system, you can migrate from ACCES32 or the QueryCardInfo() techniques to

the modern plug-and-play API by making the following changes to your program:

1) Locate your init code. This code either calls QueryCardInfo() or accesses the

“HKLM/Software/PCIFind/Parameters” registry key.

2) Delete all of this init code. Really.

3) Search and replace all instances of “InPort” and “OutPort” in your program with “RelInPort” and

“RelOutPort” respecively. Note, this changes “InPortB” and “OutPortL” to “RelInPortB” and

“RelOutPortL”, etcetera, at the same time.

4) Search and replace all instances of your base address variable plus an offset with zero comma

the offset. For example, if the orignal code had the following line:

u32bData = InPortL(BASE + 3);

it will now be, after the search and replace mentioned in step 3:
u32bData = RelInPortL(BASE + 3);

Now perform a replace of “(BASE + ” with “(0, ”. This will transform the line into:
u32bData = RelInPortL(0, 3);

which is perfect and correct for the new, plug-and-play, functions.

If you are forced to use the “flexible” method of determining your CardNums because you have

more than one AIOW DM-using device in your system, use the variable you’ve chosen to hold your

detected CardNum instead of the “0”: replace “(BASE + ” with “(CardNumVariable, ”. This would

yield:
u32bData = RelInPortL(CardNumVariable, 3);

These few steps will completely convert from the older, absolute address based API to the new plug-and-

play API. Just make sure you’re careful with your replace operations not to impact calls to non AIOW DM

functions!

Generic IRQ handling
Change-of-

State IRQs

Generic IRQ Any Register

Access

Watchdog

Boards

Board Discovery

WaitForIRQ()

UInt32 W aitForIRQ(Int32 CardNum);

This function deadlocks the calling thread until an IRQ occurs or the request is aborted. It's intended for

multi-threaded IRQ handling, where the calling application spawns a separate thread to service IRQs

quickly.

It returns nonzero if it returned because an IRQ occurred, or zero if it returned because the wait was

aborted or there was an error. If the wait was aborted, GetLastError() will return

ERROR_OPERATION_ABORTED, and if someone is already waiting for an IRQ on that card, it will return

ERROR_INVALID_FUNCTION. (Other errors will return other error codes.)

5

AbortRequest()

UInt32 AbortRequest(Int32 CardNum);

This function cancels an IRQ request begun by W aitForIRQ() or COSW aitForIRQ(), or the one begun

internally by W DGHandleIRQ(). It returns zero if it fails or nonzero if it succeeds, though the return value is

generally not useful since if it fails there was no pending IRQ request on that card to abort.

W arning: Make sure you call AbortRequest() or CloseCard() before closing the requesting thread or

application; if you don't, the thread will never complete, and the driver will retain the

request even though the thread or application has been unloaded from memory. If an IRQ

then occurs, or the request is aborted, the wait will resume execution in the nonexistent

thread, which will cause a Blue Screen Of Death.

If this does happen, perhaps due to the application crashing, do not then call AbortRequest(). Instead,

use Device Manager to disable all devices using AIOW DM, then re-enable them. This will clear the faulty

request without causing a Blue Screen Of Death, and allow you to resume working.

CloseCard()

UInt32 CloseCard(Int32 CardNum);

This function aborts any pending IRQ requests and closes the handle for the card. W hile it's necessary to

abort all pending requests before closing the application, it isn't necessary to close the handles, as this is

done automatically when AIOW DM.dll is unloaded. (W hen the .DLL is unloaded during an application

close, IRQ-requesting threads have been closed already, and thus it's already too late to abort the pending

requests - doing so would simply crash the computer.)

It returns zero if it fails or nonzero if it succeeds, though the return value is generally not useful since if it

fails there was no open handle to close.

General Information
Change-of-

State IRQs

Generic IRQ Any Register

Access

Watchdog

Boards

Board Discovery

COSWaitForIRQ()

UInt32 COSW aitForIRQ(Int32 CardNum, UInt32 PPIs, void *pData);

This function is similar to W aitForIRQ(), but it also reads data from the card's PPIs immediately after the

IRQ. It's designed specifically for the PCI-DIO-24S, PCI-DIO-48S, IOD24S, and IOD48S, and can be

dangerous with another card (as some cards take action based on incoming reads), so check the

DeviceID of your card through QueryCardInfo() first. Parameters are as follows:

 * PPIs - This is the number of PPIs on the card. The PCI-DIO-24S has 1 PPI, the PCI-DIO-48S has 2

PPIs. (You can also specify 1 PPI with the PCI-DIO-48S if you don't need the data from the second one.)

 * pData - This is a pointer to a buffer for the data. It must be at least 3 bytes per PPI.

For Visual BASIC, pData should be the first byte in an array of at least 3 bytes per PPI. For example, if

Data was declared with "Dim Data(0 To 5) As Byte", you might make the call "COSW aitForIRQ(CardNum,

2, Data(0))".

6

AbortRequest()

CloseCard()

Both of these functions, described in the “Generic IRQ Handling” section, also apply to COS IRQ

Handling.

General Information
Change-of-State Generic IRQ Any Register

Access

Watchdog

Boards

Board Discovery

WDGInit()

UInt32 W DGInit(Int32 CardNum);

This function prepares a watchdog card driver for further W DG...() function calls, like W DGPet() and

W DGHandleIRQ(). It's designed specifically for the PCI-W DG-CSM, and can be dangerous with another

card, so check the DeviceID of your card through QueryCardInfo() first. If you call one of these functions

on a card whose driver hasn't been prepared, it will fail. It returns nonzero if it succeeds, or zero if it fails.

WDGHandleIRQ()

UInt32 W DGHandleIRQ(Int32 CardNum, UInt32 Action);

This function sets up an IRQ handler to handle the next watchdog IRQ from the card specified. (This

card's driver must already be prepared for watchdog operation by the W DGInit() function.) It returns

nonzero if it succeeds, or zero if it fails. Action determines how the IRQ will be handled, as follows:

0 = Ignore.

 This will allow the watchdog circuit to trip when the timer times out, performing a "hard"

reset (if connected to the computer's reset line or power supply). A "hard" reset doesn't

give W indows the opportunity to save important data, but is as certain a reset as possible.

Note that this is what will happen if W DGHandleIRQ() is never called.

1 = Disable.

 The watchdog timer will be disabled when the card generates an IRQ. This is not

generally useful by itself except in testing.

2 = "Soft" Shutdown And Restart.

 W hen the card generates an IRQ the driver will set the watchdog timer to a 90sec

timeout, then begin a system shutdown. This "soft" shutdown allows W indows and other

programs to save important data, but possibly allows them to cancel it. W hen the

watchdog timer times out, however, the reset circuit will trip, performing a "hard" restart. If

the "soft" shutdown completed successfully, the computer will be reset at that time.

3 = Disable And "Soft" Restart.

 W hen the card generates an IRQ the driver will disable the watchdog timer, then begin a

system restart. This is similar to 2, but doesn't allow the watchdog timer to actually time

out except in case of failures so dire the IRQ doesn't get handled.

4 = "Mostly Soft" Shutdown And Restart.

 W hen the card generates an IRQ the driver will set the watchdog timer to a 90sec

timeout, then begin a system shutdown. This "mostly soft" shutdown allows W indows and

7

other programs to save important data within a limited timeframe, and doesn't allow the

shutdown to be cancelled. W hen the watchdog timer actually times out, the reset circuit

will trip, performing a "hard" restart. If the "mostly soft" shutdown completed successfully,

the computer will be reset at that time.

5 = Disable And "Mostly Soft" Restart.

 W hen the card generates an IRQ the driver will disable the watchdog timer, then begin a

system restart. This is similar to 4, but doesn't allow the watchdog timer to actually time

out except in case of failures so dire the IRQ doesn't get handled.

Actions greater than 5 are not supported, and will cause this function to fail.

WDGSetTimeout()

double W DGSetTimeout(Int32 CardNum, double Milliseconds, double MHzClockRate);

This function stops the watchdog's timer, sets the timer's timeout duration, and prepares it for a

W DGStart(). (This card's driver must already be prepared for watchdog operation by the W DGInit()

function.) If it fails, it returns zero. If it succeeds, it returns the actual timeout achieved, which will be as

close to Milliseconds as allowed by the counter's resolution. Parameters are as follows:

 * Milliseconds is the desired timeout duration in milliseconds.

 * MHzClockRate is the clock rate of the card, in MHz; for the PCI-W DG-CSM, this is 2.08333, and for

the W DG-CSM (ISA card), this is 0.894886. These constants are provided in the AIOW DM headers as

PCI_W DG_CSM_RATE and ISA_W DG_CSM_RATE.

WDGSetResetDuration()

double W DGSetResetDuration(Int32 CardNum, double Milliseconds, double MHzClockRate);

This function sets the duration of the watchdog circuit's reset for the PCI-W DG-CSM, or enables or

disables the buzzer for the W DG-CSM (ISA card). (This card's driver must already be prepared for

watchdog operation by the W DGInit() function.) Setting Milliseconds to 0.0 will disable the W DG-CSM's

buzzer, or prevent the PCI-W DG-CSM from triggering the reset circuit even if it times out. Setting

Milliseconds to a value greater than 0.0 but less than or equal to 1.0 will enable the W DG-CSM's buzzer,

or set an infinite reset duration for the PCI-W DG-CSM. Setting Milliseconds to a value greater than 1.0 will

enable the W DG-CSM's buzzer, or set the PCI-W DG-CSM's reset duration as close to the value passed

as possible. If it sets the reset duration to a finite value, it returns that value, otherwise (if it fails or merely

controls the buzzer) it returns zero.

WDGPet()

UInt32 W DGPet(Int32 CardNum);

This function "pets" a watchdog card, resetting its timers to prevent it from timing out. (This card's driver

must already be prepared for watchdog operation by the W DGInit() function.) It returns nonzero if it

succeeds, or zero if it fails.

WDGReadTemp()

double W DGReadTemp(Int32 CardNum);

This function returns the temperature sensor from a watchdog card, in degrees Farenheit. (This card's

driver must already be prepared for watchdog operation by the W DGInit() function.) A watchdog card

without a temperature sensor will report a temperature of 194.0 degrees F. An actual temperature will

never be less than 7.0 degrees F (and even that should never be seen in practice, of course). If this

function fails, it returns 0.0 degrees F.

8

WDGReadStatus()

UInt32 W DGReadStatus(Int32 CardNum);

This function reads a watchdog card's status byte at Base + 4. (This card's driver must already be

prepared for watchdog operation by the W DGInit() function.) Note that this action incidentally enables

watchdog IRQs, but that IRQs will be ignored unless W DGHandleIRQ() has been called for that card. It

returns the value of the status byte (which will be FF hex or less) if it succeeds, or a value greater than FF

hex if it fails. The format of this byte is described in the card's manual.

WDGStart()

UInt32 W DGStart(Int32 CardNum);

This function starts watchdog timing. (This card's driver must already be prepared for watchdog operation

by the W DGInit() function.) Note that the watchdog timer should be configured (as by W DGSetTimeout())

to start properly. It returns nonzero if it succeeds, or zero if it fails.

WDGStop()

UInt32 W DGStop(Int32 CardNum);

This function stops watchdog timing. (This card's driver must already be prepared for watchdog operation

by the W DGInit() function.) It returns nonzero if it succeeds, or zero if it fails.

AbortRequest()

CloseCard()

Both of these functions, described in the “Generic IRQ Handling” section, also apply to W atchdog IRQ

Handling.

EmergencyReboot()

UInt32 EmergencyReboot(void);

This function begins a "mostly soft" restart, which allows W indows and other programs to save important

data within a limited timeframe, but doesn't allow the restart to be cancelled. It returns nonzero if it

succeeds, or zero if it fails(which probably means the calling process isn't allowed to restart the system).

General Information
Change-of-State Generic IRQ Any Register

Access

Watchdog

Boards

Board

Discovery

W hen using more than one AIOW DM-using card in your system your program should always begin by

calling the two functions described below, GetNumCards, and QueryCardInfo. These two functions allow

your software to acquire a “CardNum”, used as a kind of “handle” into the list of cards installed in your

system that AIOW DM has detected. All further accesses will use this CardNum to ensure you’re

controlling the correct device.

GetNumCards()

Int32 GetNumCards(void);

This function returns the number of cards in the system using AIOW DM. The cards are numbered from

zero to one less than the number returned by GetNumCards(); these card numbers are specified for the

9

CardNum parameters of most other AIOW DM.dll functions. If an invalid card number is specified to

another function, the function will fail.

QueryCardInfo()

UInt32 QueryCardInfo(Int32 CardNum, UInt32 *pDeviceID, UInt32 *pBase, UInt32 *pNameSize, unsigned

char *pName);

This function retrieves information about the card indicated by CardNum. It returns nonzero if it succeeds,

or zero if it fails (which probably means CardNum was bad). The information retrieved is:

 * DeviceID. This is a DW ord value that tells you what kind of card it is. (For PCI cards, this is equal to

their PCI DeviceID.)

 * Base Address. This is the card's location within I/O space. To control the card, take data from it, etc,

use this base address.

 * "Friendly Name". This W indows ANSI string is the name of the card. It corresponds directly to the

DeviceID, but makes sense to a human. If the friendly name could not be retrieved, QueryCardInfo() will

give an empty string.

Parameters are as follows:

 * pDeviceID - This is a pointer to a place to put the DeviceID of the card (or a null pointer if you don't

need this information).

 * pBase - This is a pointer to a place to put the base address of the card (or a null pointer if you don't

need this information).

 * pNameSize - This is a pointer to the size of the buffer for the card's friendly name (or a null pointer if

you don't need this information). This value will be changed to the actual size needed for the buffer,

including the terminating null character.

 * pName - This is a pointer to a buffer for the card's friendly name (or a null pointer if you don't need this

information). If the value pointed to by pNameSize is initially zero, or if it's greater after the call to

QueryCardInfo() (indicating that a larger buffer is required), this buffer will not be altered.

.NET Programming Wrapper
Change-of-State Generic IRQ Any Register

Access

Watchdog

Boards

Board Discovery

an easy way to use the driver from Managed code environments like C# or VB.NET

Microsoft .NET languages attempt to lock down the programing environment to prevent certain types of

security flaws from being introduced. This is called “Managed” programming, and really refers to the fact

that these languages are very high-level scripting languages that perform much of the low-level

programming chores for the developer. This can be a good thing (more secure, easier) but it can also be a

drawback (larger code that executes slowly, difficulty integrating with hardware, quirks when integrating

with other languages).

This “managed code” environment prevents .NET code from calling directly into certain types of drivers

and DLLs, like the DLLs used to control data acquisition hardware in other languages, without violating the

“managed” wrapper. To avoid this violation, we have provided a C# language wrapper for the driver DLLs.

The PCI Driver API, AIOW DM.DLL, is wrapped up in AIOW DMNet.DLL. This DLL is simply a little piece

of code written in C# that marshals the parameters used into forms .NET is more comfortable with calling

while “managed”. The full source is provided under your installation path’s /win32 directory, so you can

take a look at it if you’d like.

10

This AIOUSBNet.DLL replaces certain file types used in other languages, things like “header files” “lib

files” “interface files” etcetera. This type of .NET DLL is often referred to as a “Class Library” – every

function from our AIOUSB.DLL is provided in the form of a .NET compatible “Class”.

The only provided support at this time is for 32-bit systems. So, the first tip in this guide:

1) Make sure your Application target development system is “x86", not “any”

Please note: some versions of Visual Studio may not have a convenient way to set the

x86 configuration (they are coded always to “any”). Here’s an article on how to modify

your project file in those cases: http://social.msdn.microsoft.com/Forums/nl-

BE/vblanguage/thread/d4fa83dc-eed1-4ead-96a1-78bbd9ba6d3a

These samples were built using Visual Studio 2010, but can be converted to compile in older versions.

2) Create a brand new project in your version, then copy and paste the source code into that new

project to build our VS2010 code in your older version.

3) If you’re rebuilding one of our Class Libraries (AIOUSBNet.DLL for example), make sure you

select a Class Library Project when you create your new project to get all the settings correct.

4) The Class Library DLL can be made much more convenient to use if you install it into the GAC

(Global Assembly Cache). This process can be difficult, but we made it easy – Check out the sub-

project in the AIOW DMNet.DLL solution which will create an installer .MSI file for you. By simply

building this project and running the resultant .MSI file, the dll and settings will be properly

installed into the GAC.

As always, check for the latest versions of our code at our website, and feel free to chat, email, or call for

technical support. W e’re here to help!

	Page 1
	Page 2
	Page 3
	Page 4
	Page 5
	Page 6
	Page 7
	Page 8
	Page 9
	Page 10

