10623 Roselle Street, San Diego, CA 92121 • (858) 550-9559 • Fax (858) 550-7322 contactus@accesio.com • www.accesio.com

MODEL 104-QUAD-8 MODEL 104-QUAD-4

EIGHT AND FOUR CHANNEL QUADRATURE INPUT PC/104 BOARDS
 USER MANUAL

Abstract

Notice The information in this document is provided for reference only. ACCES does not assume any liability arising out of the application or use of the information or products described herein. This document may contain or reference information and products protected by copyrights or patents and does not convey any license under the patent rights of ACCES, nor the rights of others.

IBM PC, PC/XT, and PC/AT are registered trademarks of the International Business Machines Corporation.
Printed in USA. Copyright 2002, 2005 by ACCES I/O Products, Inc. 10623 Roselle Street, San Diego, CA 92121. All rights reserved.

WARNING!!

ALWAYS CONNECT AND DISCONNECT YOUR FIELD CABLING WITH THE COMPUTER POWER OFF. ALWAYS TURN COMPUTER POWER OFF BEFORE INSTALLING A BOARD. CONNECTING AND DISCONNECTING CABLES, OR INSTALLING BOARDS INTO A SYSTEM WITH THE COMPUTER OR FIELD POWER ON MAY CAUSE DAMAGE TO THE I/O BOARD AND WILL VOID ALL WARRANTIES, IMPLIED OR EXPRESSED.

Abstract

Warranty Prior to shipment, ACCES equipment is thoroughly inspected and tested to applicable specifications. However, should equipment failure occur, ACCES assures its customers that prompt service and support will be available. All equipment originally manufactured by ACCES which is found to be defective will be repaired or replaced subject to the following considerations.

Terms and Conditions

If a unit is suspected of failure, contact ACCES' Customer Service department. Be prepared to give the unit model number, serial number, and a description of the failure symptom(s). We may suggest some simple tests to confirm the failure. We will assign a Return Material Authorization (RMA) number which must appear on the outer label of the return package. All units/components should be properly packed for handling and returned with freight prepaid to the ACCES designated Service Center, and will be returned to the customer's/user's site freight prepaid and invoiced.

Coverage

First Three Years: Returned unit/part will be repaired and/or replaced at ACCES option with no charge for labor or parts not excluded by warranty. Warranty commences with equipment shipment.

Following Years: Throughout your equipment's lifetime, ACCES stands ready to provide on-site or in-plant service at reasonable rates similar to those of other manufacturers in the industry.

Equipment Not Manufactured by ACCES

Equipment provided but not manufactured by ACCES is warranted and will be repaired according to the terms and conditions of the respective equipment manufacturer's warranty.

General

Under this Warranty, liability of ACCES is limited to replacing, repairing or issuing credit (at ACCES discretion) for any products which are proved to be defective during the warranty period. In no case is ACCES liable for consequential or special damage arriving from use or misuse of our product. The customer is responsible for all charges caused by modifications or additions to ACCES equipment not approved in writing by ACCES or, if in ACCES opinion the equipment has been subjected to abnormal use. "Abnormal use" for purposes of this warranty is defined as any use to which the equipment is exposed other than that use specified or intended as evidenced by purchase or sales representation. Other than the above, no other warranty, expressed or implied, shall apply to any and all such equipment furnished or sold by ACCES.

TABLE OF CONTENTS

Chapter 1: Introduction 5
Features 5
Applications 5
Functional Description 5
Figure 1-1: Block Diagram 6
Ordering Guide 6
Model Options 6
Included with your board 7
Optional Accessories 7
Chapter 2: Installation 8
CD Installation 8
DOS 8
WINDOWS 8
LINUX 8
Installing the Hardware 9
To Install the Board 9
Figure 2-1: PC/104 Key Information 9
Chapter 3: Option Selection 10
Figure 3-1: Setup Configuration Map 10
Chapter 4: Address Selection 11
Table 4-1: Hex Ranges 11
Table 4-2: Hex Conversion Table 12
Chapter 5: Programming 13
Table 5-1: Base Address Map 13
Data Registers (0, 2, 4, 8, A, C, E)h: 14
Control Registers (1, 3, 5, 7, 9, B, D, F)h: 14
Reading the FLAG Register: 14
Writing to the RLD (Reset and Load Signal Decoders): 15
Writing to the CMR (Counter Mode Register): 15
Writing to the IOR (Input / Output Control Register): 15
Writing to the IDR (Index Control Register): 16
Working with Interrupts: 16
Reading the Interrupt Status Register (10h) 16
Writing to the Channel Operation Register (11h) 16
Writing to the Index / Interrupt Register (12h) 17
Sample Code (C:DOS I debug.exe) 17
Chapter 6: Connector Pin Assignments 18
Table 6-1: Connector Pin Assignments - P2 18
Table 6-2: Connector Pin Assignments - P3 19
Chapter 7: Specification 20
Customer Comments 21

Chapter 1: Introduction

Features

- Up to eight quadrature encoders may be connected
- Input conditioning per channel allows a variety of encoder types to be used
- Interrupt for an encoder index is program enabled per channel
- Outputs to computer can include count, direction of movement
- 24 bit counters for each input channel
- $\quad+5 \mathrm{~V}$ supply available to the user

Applications

- Automatic Test Systems
- Laboratory Automation
- Robotics
- Machine Control
- Security Systems
- Energy Management

Functional Description

The card is a general purpose Quadrature Encoder Counter/Interface board. It is provided in the popular PC/104 format and conditions and monitors the outputs of 8 encoders.

Available functions include anything that can be programmed into the versatile LSI/CSI LS7266R1 integrated circuit. Core functions handled by the LS7266R1 includes direction and total count. By performing these functions on-board, it frees the computer for higher level applications.

The ability to provide an interrupt for the index frees the computer from the necessity of constantly reading the position of an encoder.

Interrupts are directed to levels \#2 through \#7, \#10 through \#12, and \#15 by jumper installation.
The card is designed for industrial applications. Each input line is buffered and capable of accepting inputs up to 6 volts. A +5 Volt source is available to provide power for many encoder types.

The conditioned inputs are connected to associated LSI/CSI LS7266R1 integrated circuits. These circuits are the heart of the card's operation. We strongly recommend reviewing the manufacturer's data sheet for detailed information.

The card occupies 32 bytes of I/O address space. The base address is selectable via jumpers anywhere within the range of 100-3E0 hex. An illustrated setup program is provided with the card. Interactive displays show locations and proper settings of jumpers to set up board address and interrupt levels.

SPECIAL NOTE FOR PROGRAMMERS:

The language not recommended for programming interrupt service routines is any version of Visual BASIC. The recommended programming languages for IRQ based applications are Delphi and C++ Builder.

Figure 1-1: Block Diagram

Ordering Guide

$$
\begin{array}{ll}
\text { 104-QUAD-8 } & \text { Eight-channel quadrature decoder PC/104 board } \\
\text { 104-QUAD-4 } & \text { Four-channel quadrature decoder PC/104 board }
\end{array}
$$

Model Options

- -T
- -F
- -DF
- -RoHS

Extended operating temperature of -40° to $+85^{\circ} \mathrm{C}$ Higher frequency FCK of 33.300 MHz
Differential filter of 120Ω in series with 4700 pF per channel.
This product is available in a RoHS compliant version. Please call for specific pricing then be sure to add this suffix to the model number on any hard-copy or verbal purchase orders.

Included with your board

The following components are included with your shipment, depending on options ordered. Please take the time now to ensure that no items are damaged or missing.

- PC/104 quadrature board
- Software Master CD
- Quick-Start Guide

Optional Accessories

- C104-40F-12 Ribbon cable assembly, 12 " with 40 pin female headers on each end
- STB-40 Screw terminal board, 40 pin male header
- DIN-SNAP6 DIN-rail mounting for one STB-40
- 104-HDW-KIT(x) PC/104 mounting hardware kit includes standard 4/40 ($x=S$ for standard), ($\mathrm{x}=\mathrm{M}$ for metric) standoffs and pan-head phillip screws for securing into PC/104 stack

Chapter 2: Installation

A printed Quick-Start Guide (QSG) is packed with the board for your convenience. If you've already performed the steps from the QSG, you may find this chapter to be redundant and may skip forward to begin developing your application.

The software provided with this PC/104 Board is on CD and must be installed onto your hard disk prior to use. To do this, perform the following steps as appropriate for your operating system. Substitute the appropriate drive letter for your CD-ROM where you see d: in the examples below.

CD Installation

The following instructions assume the CD-ROM drive is drive " D ". Please substitute the appropriate drive letter for your system as necessary.

DOS

1. Place the CD into your CD-ROM drive.
2. Type 0 Ened to change the active drive to the CD-ROM drive.
3. Type 10 STll
4. Follow the on-screen prompts to install the software for this board.

WINDOWS

1. Place the CD into your CD-ROM drive.
2. The system should automatically run the install program. If the install program does not run promptly, click START | RUN and type D
3. Follow the on-screen prompts to install the software for this board.

LINUX

1. Please refer to linux.htm on the CD-ROM for information on installing under linux.

Installing the Hardware

Before installing the board, carefully read Chapter 3 and Chapter 4 of this manual and configure the board according to your requirements. The SETUP Program can be used to assist in configuring jumpers on the board. Be especially careful with Address Selection. If the addresses of two installed functions overlap, you will experience unpredictable computer behavior. To help avoid this problem, refer to the FINDBASE.EXE program installed from the CD. The setup program does not set the options on the board, these must be set by jumpers.

To Install the Board

1. Install jumpers for selected options and base address according to your application requirements, as mentioned above.
2. Remove power from the PC/104 stack.
3. Assemble standoff hardware for stacking and securing the boards.
4. Carefully plug the board onto the PC/104 connector on the CPU or onto the stack, ensuring proper alignment of the pins before completely seating the connectors together.
5. Install I/O cables onto the board's I/O connectors and proceed to secure the stack together or repeat steps 3-5 until all boards are installed using the selected mounting hardware.
6. Check that all connections in your PC/104 stack are correct and secure then power up the system.
7. Run one of the provided sample programs appropriate for your operating system that was installed from the CD to test and validate your installation.

Figure 2-1: PC/104 Key Information

Chapter 3: Option Selection

The only selections necessary to setup on the card are the IRQ level and the card's base address. All other features are setup via software.

Interrupts are directed to levels \#2 through \#7, \#10 through \#12, and \#15 by a jumper at locations labeled IRQ2 through IRQ7, IRQ10 through IRQ12, and IRQ15.

Figure 3-1: Setup Configuration Map

Chapter 4: Address Selection

The card occupies 32 bytes of I/O space. The card base address can be selected anywhere within the I/O address range 100-3EO hex. If in doubt of where to assign the base address, refer to the table below and the FINDBASE program.

HEX RANGE	USAGE
000-00F	8237 DMA Controller 1
020-021	8259 Interrupt
040-043	8253 Timer
060-06F	8042 Keyboard Controller
070-07F	CMOS RAM, NMI Mask Reg, RT Clock
080-09F	DMA Page Register
0A0-0BF	8259 Slave Interrupt Controller
0C0-0DF	8237 DMA Controller 2
0F0-0F1	Math Coprocessor
0F8-0FF	Math Coprocessor
170-177	Fixed Disk Controller 2
1F0-1F8	Fixed Disk Controller 1
200-207	Game Port
238-23B	Bus Mouse
23C-23F	Alt. Bus Mouse
278-27F	Parallel Printer
2B0-2BF	EGA
2C0-2CF	EGA
2D0-2DF	EGA
2E0-2E7	GPIB (AT)
2E8-2EF	Serial Port
2F8-2FF	Serial Port
300-30F	
310-31F	
320-32F	Hard Disk (XT)
370-377	Floppy Controller 2
378-37F	Parallel Printer
380-38F	SDLC
3A0-3AF	SDLC
3B0-3BB	MDA
3BC-3BF	Parallel Printer
3C0-3CF	VGA EGA
3D0-3DF	CGA
3E8-3EF	Serial Port
3F0-3F7	Floppy Controller 1
3F8-3FF	Serial Port

Table 4-1: Hex Ranges

The board's base address is set up by JUMPERS. Those jumpers control address bits A5 through A9. (Lines A4, A3, A2, A1 and A0 are used on the board to control individual registers. How these four lines are used is described in the Programming section of this manual.)

To determine how to set these JUMPERS for a desired hex-code address, refer to the SETUP program provided with the board. If you prefer to determine proper jumper settings yourself, first convert the hexcode address to binary form. Then, for each " 0 ", install corresponding jumpers and for each "1", remove the corresponding jumper.

The following example illustrates jumper selection corresponding to hex 300 (or binary 11 000 xxxx). The " x xxxx" represents address lines A4, A3, A2, A1, and A0 used on the board to select individual registers as described in the Programming section of this manual.

Base Address in Hex Code	3		0		
Conversion Factors	2	1	8	4	2
Binary Representation	1	1	0	0	0
Jumper Legend	A9	A8	A7	A6	A5
Addr. Line Controlled	A9	A8	A7	A6	A5
Jumper Selection	OFF	OFF	ON	ON	ON

Table 4-2: Hex Conversion Table
Carefully review the address selection reference table on the preceding page before selecting the board address. If the addresses of two installed functions overlap, you will experience unpredictable computer behavior.

Chapter 5: Programming

The card is an I/O-mapped device that is easily configured from any language and any language can easily perform quadrature reads. This is especially true if the form of the data is byte or word wide. All references to the I/O ports would be in absolute port addressing. However, a table could be used to convert the byte or word data ports to a logical reference.

Please refer to the chip-specification for the LS7266R1 in addition to this user manual for guidance and information helpful to write device drivers for it (this spec sheet is on the software CD located in "ChipDocs"), Also, the source code for Windows shows how to write device drivers for this product.

Address	Port Assignment	Operation	Device
Base Address	Channel 1 Data	Read/Write	$\begin{gathered} \text { First } \\ \text { LS7266R1 } \end{gathered}$
Base Address +1	Channel 1 Flag / Command	Read/Write	
Base Address +2	Channel 2 Data	Read/Write	
Base Address +3	Channel 2 Flag / Command	Read/Write	
Base Address +4	Channel 3 Data	Read/Write	$\begin{gathered} \text { Second } \\ \text { LS7266R1 } \end{gathered}$
Base Address +5	Channel 3 Flag / Command	Read/Write	
Base Address +6	Channel 4 Data	Read/Write	
Base Address +7	Channel 4 Flag / Command	Read/Write	
Base Address +8	Channel 5 Data	Read/Write	$\begin{gathered} \text { Third } \\ \text { LS7266R1 } \end{gathered}$
Base Address +9	Channel 5 Flag / Command	Read/Write	
Base Address +A	Channel 6 Data	Read/Write	
Base Address +B	Channel 6 Flag / Command	Read/Write	
Base Address +C	Channel 7 Data	Read/Write	FourthLS7266R1
Base Address +D	Channel 7 Flag / Command	Read/Write	
Base Address +E	Channel 8 Data	Read/Write	
Base Address +F	Channel 8 Flag / Command	Read/Write	
Base Address +10	Interrupt Status Register	Read Only	
Base Address +11	Channel Operation Register	Read/Write	
Base Address +12	Index/Interrupt Register	Read/Write	
Base Address +13 (Optional)	Select 130.078 kHz FCK	Write Only	
Base Address +14 (Optional)	Select 33.300 MHz FCK	Write Only	

Table 5-1: Base Address Map

Data Registers (0, 2, 4, 8, A, C, E)h:

These registers are read to retrieve the current count from the channel, and written to set the Preset Register and the Filter Clock Prescalers.

To get the count from Channel 1 (Data register 0) you would first write 11 h to the control register at address 1. Three reads are then required to get the current count from data register 0 . The first read returns the Least Significant Byte and the last read returns the Most Significant Byte.

In order to write to the Preset Register first write 11h to the control register. Then perform three writes to the data register. The first write is the Least Significant Byte, and the last write is the Most Significant Byte.

In order to write to the Filter Clock Prescaler first write 11h to the control register. Then write one byte to the data register with the desired PSC value. Then write 19h to the control register.

Control Registers (1, 3, 5, 7, 9, B, D, F)h:

The control registers all correspond to the data register that is one address below it.
The control register is used for the following operations:

- Reading the Flag Register;
- Resetting the BP (three byte data pointer) and flags;
- \quad Setting the PSC (filter clock factor n) and PR (preset count);
- Initial setup of the Counter Mode Register, Input/Output Control Register and Index Control Register.

Reading the FLAG Register:

Bit 0 BT: Borrow Toggle flip-flop. Toggles every time the counter underflows.
Bit 1 CT: Carry Toggle flip-flop. Toggles every time the counter overflows.
Bit 2 CPT : Compare Toggle flip-flop. Toggles every time the counter is equal to the Preset Register.

Bit 3 S : \quad Sign flag. Set to 1 when counter underflows and reset to 0 when it overflows.
Bit 4 E : Error flag. Set to 1 when excessive noise is present at the count inputs in quadrature mode. Ignore in other modes.

Bit 5 U/D: Up/Down flag. Set to 1 when counting up and reset to 0 when counting down.
Bit 6 IDX: Index. Set to 1 when selected index input is at active level.
Bit 7: \quad Not used is always 0 .

Writing to the RLD (Reset and Load Signal Decoders):

Bit 0: $\quad 1$ to reset $B P$.
Bits $1 \& 2$: Set bit 1 high to reset CNTR, set bit 2 high to reset $B T, C T, C P T, S$ flags. Set both bits high to reset E flag.

Bits 3 \& 4: Set bit 3 high to transfer Preset Register to Counter.
Set bit 4 high to transfer CNTR to Output Latch.
Set both high to transfer Preset Register LSB to the PSC (FCK Prescaler).
Bits 5 \& 6: \quad Set both bits to 0 .
Bit 7: Set high to program both counters simultaneously.

Writing to the CMR (Counter Mode Register):

Bit 0: Set low to use Binary count, and set high to use BCD count.
Bits 1 \& 2: \quad Set both low to use Normal count.
Set bit 1 high to use Range Limit.
Set bit 2 high to use Non-Recycle count.
Set both bits high to use Modulo-N count.
Bits 3 \& 4: \quad Set both bits low to use non-quadrature mode.
Set bit 3 high to use Quadrature times 1.
Set bit 4 high to use Quadrature times 2.
Set both bits high to use Quadrature times 4.
Bits 5 \& 6: \quad Set bit 5 high and bit 6 low.
Bit 7: \quad Set high to program both counters simultaneously.

Writing to the IOR (Input / Output Control Register):

Bit 0 : Set high to enable A and B inputs.
Bit 1: Set low to preset count when Index occurs. Set high to continuously count.

Bit 2: Set low.
Bits 3 \& 4: Set both bits low to use FLG1 as /Carry (active low).
Set bit 3 high to use FLG1 as /Compare (active low).
Set bit 4 high to use FLG1 as /Carry/Borrow (active low).
Set both bits high to use FLG1 as Index (active high).
Bits 5 \& 6: \quad Set bit 5 low and bit 6 high.
Bit 7: \quad Set high to program both counters simultaneously.
Note that when Interrupts are enabled on the card they occur whenever FLG1 is active.

Writing to the IDR (Index Control Register):

Bit 0: \quad Set high to enable index.
Bit 1: \quad Set high for a positive index polarity. Set low for a negative index polarity.

Bit 2: Set low.
Bits 3 \& 4: Not used.
Bits 5 \& 6: Set high.
Bit 7: \quad Set high to program both counters simultaneously.

Working with Interrupts:

Reading the Interrupt Status Register (10h)

When an interrupt occurs read from address 10 h to determine which channel was the source.
Bit 0-7: \quad The Least Significant Bit will correspond to the first channel. High = true

Writing to the Channel Operation Register (11h)

Any write to this address will clear any pending interrupts.
A read from this address will return it's contents.
Bit 0: Set high to reset all Counters.
Set low to enable all Counters.
Bit 1: Reserved.
Bit 2: Set low to disable the interrupt function.
Set high to enable the interrupt function.
Bits 3-7: Reserved.

Writing to the Index I Interrupt Register (12h)

This register is used to Preset Counter via the LCNTR input pin when a channel index occurs as described in Writing to the IOR and Writing to the IDR.

Additionally it is used to generate interrupts whenever FLG1 on a channel is active as described in Writing to the IOR and Writing to the Channel Operation Register.

Each bit of this register enables / disables a corresponding channel.
A read from this address will return it's contents.
Bit 0: Set high to enable Channel 1
Bit 1: Set high to enable Channel 2
Bit 2: Set high to enable Channel 3
Bit 3: Set high to enable Channel 4
Bit 4: Set high to enable Channel 5
Bit 5: Set high to enable Channel 6
Bit 6: Set high to enable Channel 7
Bit 7: Set high to enable Channel 8

Sample Code (C:DOS / debug.exe)

Channel 1 setup
o 30115
o 30000
o 30000
o 30000
o 30128
o 30159
o 30163
o 31105
o 31104
o 31201
Channel 1 data (24-bit) and flags (8-bit), card interrupt status (8-bit)
o 30111
i 300
i 300
i 300
i 301
i 310
o 31104
repeat above 7 commands while turning encoder

Chapter 6: Connector Pin Assignments

Pin	Channel	Function	Pin	Channel	Function
1		Ground	18	3	Fused +5V
2	1	Fused +5V	19	3	Index Negative Input
3	1	Index Negative Input	20	3	Index Positive Input
4	1	Index Positive Input	21	3	Quadrature A Negative Input
5	1	Quadrature A Negative Input	22	3	Quadrature A Positive Input
6	1	Quadrature A Positive Input	23	3	Quadrature B Negative Input
7	1	Quadrature B Negative Input	24	3	Quadrature B Positive Input
8	1	Quadrature B Positive Input	25		Ground
9		Ground	26	4	Fused +5V
10	2	Fused +5V	27	4	Index Negative Input
11	2	Index Negative Input	28	4	Index Positive Input
12	2	Index Positive Input	29	4	Quadrature A Negative Input
13	2	Quadrature A Negative Input	30	4	Quadrature A Positive Input
14	2	Quadrature A Positive Input	31	4	Quadrature B Negative Input
15	2	Quadrature B Negative Input	32	4	Quadrature B Positive Input
16	2	Quadrature B Positive Input	33		No connection
17		Ground	34		No connection

Table 6-1: Connector Pin Assignments - P2
Notes:

1. When using single-ended Encoders leave the Negative Input open and connect the Encoder (A, B, Index) output lead to the corresponding Positive Input pin.
2. Both single-ended and differential Encoders require a ground connection between the Encoder and the PC/104 board to eliminate the adverse effects of exceeding the common mode range.

Pin	Channel	Function	Pin	Channel	Function
1		Ground	18	7	Fused +5V
2	5	Fused +5V	19	7	Index Negative Input
3	5	Index Negative Input	20	7	Index Positive Input
4	5	Index Positive Input	21	7	Quadrature A Negative Input
5	5	Quadrature A Negative Input	22	7	Quadrature A Positive Input
6	5	Quadrature A Positive Input	23	7	Quadrature B Negative Input
7	5	Quadrature B Negative Input	24	7	Quadrature B Positive Input
8	5	Quadrature B Positive Input	25		Ground
9		Ground	26	8	Fused +5V
10	6	Fused +5V	27	8	Index Negative Input
11	6	Index Negative Input	28	8	Index Positive Input
12	6	Index Positive Input	29	8	Quadrature A Negative Input
13	6	Quadrature A Negative Input	30	8	Quadrature A Positive Input
14	6	Quadrature A Positive Input	31	8	Quadrature B Negative Input
15	6	Quadrature B Negative Input	32	8	Quadrature B Positive Input
16	6	Quadrature B Positive Input	33		No connection
17		Ground	34		No connection

Table 6-2: Connector Pin Assignments - P3

Notes:

1. When using single-ended Encoders leave the Negative Input open and connect the Encoder (A, B, Index) output lead to the corresponding Positive Input pin.
2. Both single-ended and differential Encoders require a ground connection between the Encoder and the PC/104 board to eliminate the adverse effects of exceeding the common mode range.

Chapter 7: Specification

Power Consumption

- +5 Volts
+ 5 V Fused Outputs
260 mA (typical, no load on +5 V fused output pins)
Two 0.5A Resettable fuses

Input Section

- Receiver Type
- Configuration per Encoder
- Number of Channels
- Common mode input range
- Differential Input Range
- Sensitivity
- Hysteresis
- Bias
- Options

AM26LS32
Phase A, Phase B and Index as Differential Pairs 8
+/- 7 V maximum
+6 V maximum
$+/-200 \mathrm{mV}$
50 mV Typical
(Positive pins) +5 V via $4.7 \mathrm{k} \Omega$ pull ups
(Negative pins) +2.5 V via pull up/down combo
Differential filter 120Ω in series with 4700 pF

Counter Section

- Counter Type:
- Quadrature Clock Frequency
- Quadrature Separation
- Quadrature Clock Pulse Width
- Index Pulse width
- Filter Clock (FCK)

LS7266R1 24 bit Dual Axis Quadrature Counter
4.3 MHz maximum

57 ns min
115 ns min
85 ns min
PC/104 Bus OSC 14.318 MHz
(Optional 33.300 MHz oscillator available)

Interrupt Controller Section

- Controller Type
- Interrupts
- Interrupt Sources
- Addressing

CPLD
Jumper selectable (2-7,10-12,15)
FLG1 outputs from LS7266R1s
ISA bus address is set by jumpers (100-3EOh)
$0^{\circ} \mathrm{C}$ to $+70{ }^{\circ} \mathrm{C}$ (optional $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$) $-50{ }^{\circ} \mathrm{C}$ to $+120^{\circ} \mathrm{C}$
up to 95% RH, non-condensing

Customer Comments

If you experience any problems with this manual or just want to give us some feedback, please email us at: manuals@accesio.com. Please detail any errors you find and include your mailing address so that we can send you any manual updates.

10623 Roselle Street, San Diego CA 92121
Tel. (858)550-9559 FAX (858)550-7322
www.accesio.com

